4.1 Article Proceedings Paper

Ecological and genetic interactions in Drosophila-parasitoids communities:: a case study with D-melanogaster, D-simulans and their common Leptopilina parasitoids in south-eastern France

期刊

GENETICA
卷 120, 期 1-3, 页码 181-194

出版社

SPRINGER
DOI: 10.1023/B:GENE.0000017640.78087.9e

关键词

field ecology; genotype-by-environment interaction; host-parasite interactions; host suitability; interspecific competition; parasite-mediated coexistence; temperature

向作者/读者索取更多资源

Drosophila species are attacked by a number of parasitoid wasps, which constitute an important factor of population regulation. Since Drosophila melanogaster and Drosophila simulans share common parasitoid species, their ecology and evolution can hardly be understood without considering parasitoids. After a short review of data available on Drosophila-parasitoid interactions involving D. melanogaster and D. simulans as hosts, we report field and laboratory experiments investigating the ecological role of Leptopilina parasitoids in Drosophila communities of southern France. Seasonal survey of species abundance shows that strong interspecific interactions occur at both tropic levels. D. simulans progressively replaces D. melanogaster in southern areas suggesting competitive displacement. Parasitoids are responsible for very high Drosophila mortality (up to 90% in some fruits). Field data emphasize the importance of selective pressure that parasitoids exert on Drosophila communities. The two Leptopilina parasites (L. heterotoma and L. boulardi) have different local abundances, which vary in time, and they also compete for hosts. We show that parasitoids can mediate the coexistence of D. melanogaster and D. simulans in the laboratory, and thus may contribute to their puzzling coexistence in the field. Conversely, hosts exert selective pressures on parasitoids, and development on either D. melanogaster or D. simulans strongly affects fitness of adult wasps in a temperature-dependent fashion. Local variation in host species abundance and diversity could thus account for the genetic differentiation we observed in one parasitoid species. Despite laboratory studies cannot fully explain complex field situations, it is clear that the ecology and evolution of Drosophila populations and communities, especially D. melanogaster and D. simulans, are strongly constrained by parasitoids, which should receive more attention.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据