4.5 Article

Deficiency of the first mannosylation step in the N-glycosylation pathway causes congenital disorder of glycosylation type Ik

期刊

HUMAN MOLECULAR GENETICS
卷 13, 期 5, 页码 535-542

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddh050

关键词

-

向作者/读者索取更多资源

Defects of N-linked glycosylation represent diseases with multiple organ involvements that are classified as congenital disorders of glycosylation (CDG). In recent years, several CDG types have been attributed to defects of dolichol-linked oligosaccharide assembly in the endoplasmic reticulum. The profiling of [H-3]mannose-labeled lipid-linked oligosaccharides was instrumental in identifying most of these glycosylation disorders. However, this method is poorly suited for the identification of short lipid-linked oligosaccharide biosynthesis defects. To adequately resolve deficiencies affecting the first steps of lipid-linked oligosaccharide formation, we have used a non-radioactive procedure employing the fluorescence detection of 2-aminobenzamide-coupled oligosaccharides after HPLC separation. By applying this method, we have detected the accumulation of dolichylpyrophosphate-GlcNAc(2) in a previously untyped CDG patient. The accumulation pattern suggested a deficiency of the ALG1 beta1,4 mannosyltransferase, which adds the first mannose residue to lipid-linked oligosaccharides. This was supported by the finding that this CDG patient was compound heterozygous for three mutations in the ALG1 gene, leading to the amino acid substitutions S150R and D429E on one allele and S258L on the other. The detrimental effect of these mutations on ALG1 protein function was demonstrated in a complementation assay using alg1 Saccharomyces cerevisiae yeast mutants. The ALG1 mannosyltransferase defect described here represents a novel type of CDG, which should be referred to as CDG-Ik.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据