4.5 Article

Ex vivo static tensile loading inhibits MMP-1 expression in rat tall tendon cells through a cytoskeletally based mechanotransduction mechanism

期刊

JOURNAL OF ORTHOPAEDIC RESEARCH
卷 22, 期 2, 页码 328-333

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0736-0266(03)00185-2

关键词

tendon cells; load; cytoskeleton; mechanotransduction; MMP-1

向作者/读者索取更多资源

To determine the effect of various degrees of ex vivo static tensile loading on the expression of collagenase (MMP-1) in tendon cells, rat tail tendons were statically loaded in tension at 0.16, 0.77, 1.38 or 2.6 MPa for 24 h. Northern blot analysis was used to assay for mRNA expression of MMP-1 in freshly harvested, 24 h load deprived, and 24 h statically loaded tendons. Western blot analysis was used to assay for pro-MMP-1 and MMP-1 protein expression in fresh and 24 h load deprived tendons. Freshly harvested rat tail tendons demonstrated no evidence of MMP-1 mRNA expression and no evidence of the pro-MMP-1 or MMP-1 protein. Ex vivo load deprivation for 24 h resulted in a marked increase in the mRNA expression of MMP-1 which coincided with a marked increase of both pro-MMP-1 and MMP-1 protein expression. When tendons were subjected to ex vivo static tensile loading during the 24 h culture period, a significant inhibition of this upregulation of MMP-1 mRNA expression was found with increasing load (p < 0.05). A strong (r(2) = 0.78) and significant (p < 0.001) inverse correlation existed between the level of static tensile load and the expression of MMP-1. Disruption of the actin cytoskeleton with cytochalasin D abolished the inhibitory effect of ex vivo static tensile loading on MMP-1 expression. The results of this study suggest that up-regulation of MMP-1 expression in tendon cells ex vivo can be inhibited by static tensile loading, presumably through a cytoskeletally based mechanotransduction pathway. (C) 2003 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据