4.4 Article

Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts

期刊

APPLIED PHYSICS B-LASERS AND OPTICS
卷 78, 期 5, 页码 593-599

出版社

SPRINGER-VERLAG
DOI: 10.1007/s00340-004-1469-7

关键词

-

向作者/读者索取更多资源

Optical rectification of ultrashort near-IR laser pulses with tilted pulse fronts and pulse energies of a few muJ in Mg-doped stoichiometric LiNbO3 cooled to low temperature is a powerful technique for efficient generation of THz pulses. The pulse energy critically depends on the Mg doping (necessary for preventing photorefractive damage) and can be easily increased by a factor of three if the MgO content is reduced. Pulse energies up to 400 pJ at repetition rates of 200 kHz and 3.4% quantum conversion efficiency are achieved at 77 K. At 10 K, changing the tilt angle of the pump pulse front results in continuous tuning of the frequency across the 1.0-4.4 THz range. The temporal pulse shapes measured by electro-optic sampling are in good agreement with the signal calculated by a simple theory. This model predicts tunability on a considerably broader range and narrower spectra even at room temperature if GaSe is used instead of LiNbO3. The advantages of the velocity matching technique utilizing tilted pulse fronts are analyzed in comparison with quasi-phase-matching in periodically poled LiNbO3 crystals. The first method provides a ten times higher pulse energy conversion efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据