4.7 Article

Conserved selenoprotein synthesis is not critical for oxidative stress defence and the lifespan of Drosophila

期刊

EMBO REPORTS
卷 5, 期 3, 页码 317-322

出版社

WILEY
DOI: 10.1038/sj.embor.7400097

关键词

Drosophila; eEFsec; SelB; selenoprotein; oxidative; stress

向作者/读者索取更多资源

Selenoprotein synthesis is conserved from bacteria to man. It involves the differential decoding of the UGA stop codon as selenocysteine. The proteomes of both prokaryotes and eukaryotes, with the exception of yeast, contain only few selenoproteins. This low number is explained by a counterselection of readily oxidized selenocysteine after the introduction of oxygen into the atmosphere and the need to conserve selenoenzymes that control redox homeostasis of cells. Lack of selenoprotein synthesis in vertebrates impairs the oxidative stress defence and causes lethality. Here we show that Drosophila mutants that lack the translation elongation factor SelB/eEFsec fail to decode the UGA codon as selenocysteine, but they are viable and fertile. Oxidative stress responses and the lifespan of these flies are not affected. Protecting cells from oxidative stress can therefore not account for the selection pressure that conserves selenoprotein biosynthesis during the course of evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据