4.5 Article

Adenovirus vector-mediated in vivo gene transfer of brain-derived neurotrophic factor (BDNF) promotes rubrospinal axonal regeneration and functional recovery after complete transection of the adult rat spinal cord

期刊

JOURNAL OF NEUROTRAUMA
卷 21, 期 3, 页码 329-337

出版社

MARY ANN LIEBERT INC PUBL
DOI: 10.1089/089771504322972112

关键词

gene transfer; neurotrophin; spinal cord injury

向作者/读者索取更多资源

Neurotrophins have been shown to promote axonal regeneration, but the techniques available for delivering neurotrophins have limited effectiveness. The aim of this study was to evaluate the effect of adenovirus vector mediated gene transfer of brain-derived neurotrophic factor (BDNF) on axonal regeneration after spinal cord injury. We prepared adenovirus vectors encoding either beta-galactosidase (AxCALacZ) or BDNF (AxCABDNF). AxCALacZ was used to assess infection levels of the adenovirus BDNF produced by AxCABDNF was detected by Western blotting and its bioactivity was confirmed by bioassay. As a model of spinal cord injury, the rat spinal cord was completely transected at the T8 level. Immediately after transection, the vectors were injected into both stumps of the spinal cord. Axonal regeneration after transection was assessed by retrograde and anterograde tracing. In AxCALacZ-injected rats, adenovirus-infected cells were observed not only at the injected site but also in brainstem nuclei, as shown by LacZ expression. After the injection of the retrograde tracer fluorogold (FG) distal portion to the transection, AxCABDNF-injected rats showed FG-labeled neurons in the red nucleus. The anterograde tracer biotinylated dextran amine (BDA) injected into the red nucleus was also found in regenerating rubrospinal fibers distal to the transection. These tracing experiments demonstrated the regeneration of descending axons. In addition, rats of the AxCABDNF group showed significant locomotor recovery of hindlimb function, which was completely abolished by re-transection. These results indicate that the recovery was caused by regeneration of rubrospinal axons, not by simple enhancement of the central pattern generator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据