4.6 Article

Exchange interactions in III-V and group-IV diluted magnetic semiconductors -: art. no. 115208

期刊

PHYSICAL REVIEW B
卷 69, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.115208

关键词

-

向作者/读者索取更多资源

Effective pair exchange interactions between Mn atoms in III-V and group-IV diluted magnetic semiconductors are determined from a two-step first-principles procedure. In the first step, the self-consistent electronic structure of a system is calculated for a collinear spin structure at zero temperature with the substitutional disorder treated within the framework of the coherent-potential approximation. The effective exchange pair interactions are then obtained in a second step by mapping the total energies associated with rotations of magnetic moments onto an effective classical Heisenberg Hamiltonian using the magnetic force theorem and one-electron Green functions. The formalism is applied to Ga1-xMnxAs alloys with and without As antisites, and to Ge1-xMnx alloys recently studied experimentally. A detailed study of the behavior of pair exchange interactions as a function of the distance between magnetic atoms as well as a function of the concentrations of the magnetic atoms and compensating defects is presented. We have found that due to disorder and the half-metallic character of the system the pair exchange interactions are exponentially damped with increasing distance between the Mn atoms. The exchange interactions between Mn atoms are ferromagnetic for distances larger than the ones corresponding to the averaged nearest-neighbor Mn-Mn distance. The pair exchange interactions are also reduced with increasing concentrations of the Mn atoms and As antisites. As a simple application of the calculated exchange interactions we present mean-field estimates of Curie temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据