4.5 Article

Ritonavir-PEG 8000 amorphous solid dispersions:: In vitro and in vivo evaluations

期刊

JOURNAL OF PHARMACEUTICAL SCIENCES
卷 93, 期 3, 页码 563-570

出版社

ELSEVIER SCIENCE INC
DOI: 10.1002/jps.10566

关键词

ritonavir; inhibition; cell lines; amorphous; solid dispersion; bioavailability; in vivo-in vitro correlation (IVIVC)

向作者/读者索取更多资源

Ritonavir is a large, lipophilic molecule that is practically insoluble in aqueous media and exhibits an exceedingly slow intrinsic dissolution rate. Although it has favorable lipophilicity, in vitro permeability studies have shown that ritonavir is a substrate of P-glycoprotein. Thus, the oral absorption of ritonavir could be limited by both dissolution and permeability, thereby making it a Class IV compound in the Biopharmaceutics Classification System. Because formulations rarely exert direct influence on local intestinal permeability, the effect of enhanced dissolution rate on oral absorption was explored. More specifically, poly(ethylene glycol) (PEG)-amorphous ritonavir solid dispersions were prepared with different drug loadings, and the in vitro and in vivo performances of the dispersions were evaluated. In vitro dissolution was conducted in 0.1N HCl with a USP Apparatus 1. A crossover design was used to evaluate the oral bioavailability of amorphous dispersions relative to crystalline drug in beagle dogs. Intrinsic dissolution measurements of the two solid phases indicated a 10-fold improvement in intrinsic dissolution rate for amorphous ritonavir compared with the crystalline counterpart. In vitro dissolution of ritonavir depended on the solid phase as well as drug loading of the dispersion. In vivo study results indicate that amorphous solid dispersions containing 10-30% drug exhibited significant increases in area under the curve of concentration versus time (AUC) and maximum concentration (C-max) over crystalline drug. For example, 10% amorphous dispersion exhibited increases of 22- and 13.7-fold in AUC and C-max respectively. However, both in vitro dissolution and bioavailability decreased with increasing drug load, which led to the construction of a multiple Level C in vitro-in vivo relationship for this Class IV compound. The established relationship between in vitro dissolution and in vivo absorption can help guide formulation development. (C) 2004 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据