4.5 Article Proceedings Paper

Coevolution of insect trypsins and inhibitors

期刊

出版社

WILEY
DOI: 10.1002/arch.10134

关键词

primary specificity; trypsin-inhibitor interactions; evolution of trypsins

向作者/读者索取更多资源

Many plant proteinase inhibitors have lysine at the P1 position, presumably to avoid hydrolysis by insect trypsins. Lepidopteran trypsins appear to have adapted to resist proteinase inhibitors through increased inhibitor hydrolysis and decreased binding to inhibitor hydrophilic reactive sites. Lepidopteran digestive trypsins prefer lysine at the P1 position and have substrate binding subsites more hydrophobic than trypsins from insects in other orders. All available sequences of sensitive and inhibitor-insensitive insect trypsins were aligned with porcine trypsin, for which interactions with Kunitz and Bowman-Birk inhibitor are known. After discounting conserved positions and positions not typical of sensitive or insensitive trypsins, the following residues were considered important to insect trypsin-PI interactions (chymotrypsin numbering): 60, 94, 97, 98, 99, 188, 190, 213, 215, 217, 219, 228. These residues support the Neighbor Joining analysis tree branches separating sensitive and insensitive trypsin sequences. Primary sequences interacting with Pis are around the active site, with some forming part of the S1 (188, 217, 219 and 228) or S4 (99, 215) pockets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据