4.6 Article

Ground-state cooling of mechanical resonators

期刊

PHYSICAL REVIEW B
卷 69, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.125339

关键词

-

向作者/读者索取更多资源

We propose an application of a single Cooper pair box (Josephson qubit) for active cooling of nanomechanical resonators. Latest experiments with Josephson qubits demonstrated that long coherence time of the order of microsecond can be achieved in special symmetry points. Here we show that this level of coherence is sufficient to perform an analog of the well known in quantum optics laser cooling of a nanomechanical resonator capacitively coupled to the qubit. By applying an ac driving to the qubit or the resonator, resonators with frequency of order 100 MHz and quality factors higher than 10(3) can be efficiently cooled down to their ground state, while lower-frequency resonators can be cooled down to micro-Kelvin temperatures. We also consider an alternative setup where dc-voltage-induced Josephson oscillations play the role of the ac driving and show that cooling is possible in this case as well.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据