4.7 Article

Serine carboxypeptidase-like acyltransferases

期刊

PHYTOCHEMISTRY
卷 65, 期 5, 页码 517-524

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phytochem.2003.12.018

关键词

acyltransferases; serine carboxypeptidases; alpha/beta hydrolases; sinapate esters; molecular evolution

向作者/读者索取更多资源

In plant secondary metabolism, an alternative pathway of ester formation is facilitated by acyltransferases accepting 1-O-beta-acetal esters (1-O-beta-glucose esters) as acyl donors instead of coenzyme A thioesters. Molecular data indicate homology of these transferases with hydrolases of the serine carboxypeptidase type defining them as serine carboxypeptidase-like (SCPL) acyltransferases. During evolution, they apparently have been recruited from serine carboxypeptidases and adapted to take over acyl transfer function. SCPL acyltransferases belong to the highly divergent class of alpha/beta hydrolases. These enzymes make use of a catalytic triad formed by a nucleophile, an acid and histidine acting as a charge relay system for the nucleophilic attack on amide or ester bonds. In analogy to SCPL acyltransferases, bacterial thioesterase domains are known which favour transferase activity over hydrolysis. Structure elucidation reveals water exclusion and a distortion of the oxyanion hole responsible for the changed activity. In plants, SCPL proteins form a large family. By sequence comparison, a distinguished number of Arabidopsis SCPL proteins cluster with proven SCPL acyltransferases. This indicates the occurrence of a large number of SCPL proteins co-opted to catalyse acyltransfer reactions. SCPL acyltransferases are ideal systems to investigate principles of functional adaptation and molecular evolution of plant genes. (C) 2004 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据