4.2 Article

Electron thermalization in metallic islands probed by Coulomb blockade thermometry

期刊

JOURNAL OF LOW TEMPERATURE PHYSICS
卷 134, 期 5-6, 页码 1119-1143

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1023/B:JOLT.0000016733.75220.5d

关键词

low temperature thermometry; Coulomb blockade; electron-phonon coupling

向作者/读者索取更多资源

We describe a systematic series of experiments on thermalization of electrons in lithographic metallic thin films at millikelvin temperatures using Coulomb blockade thermometry (CBT). Joule dissipation due to biasing of the CBT sensor tends to drive the electron system into non-equilibrium. Under all experimental conditions tested, the electron-electron relaxation is fast enough to ensure thermal electron distribution, which is also in agreement with the theoretical arguments we present. On the other hand, poor electron-phonon relaxation plays a dominant role in lifting the electron temperature above that of the bath. From a comparison of the results with the theoretical current-voltage characteristics of the thermometers we precisely determine the electron-phonon coupling constant for the common metals used. Our experiments show that it is a formidable task to attain thermal equilibrium with the bath using single-electron devices under non-zero bias conditions at 20-50 mK temperatures that are typically encountered in experiments. The conclusion concerning Coulomb blockade thermometry is more optimistic and two-fold: (1) One can now correct the errors due to bias heating in a satisfactory manner based on known material properties and the size of the metal films in the sensor. (2) Reliable thermometry down to 20 mK requires islands whose volumes are > 10(-15) m(3), which is still acceptable both from the parameter (capacitance) and fabrication points of view.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据