4.7 Article

Brain gene expression, metabolism, and bioenergetics: interrelationships in murine models of cerebral and noncerebral malaria

期刊

FASEB JOURNAL
卷 18, 期 3, 页码 499-510

出版社

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.03-0543com

关键词

Plasmodium berghei; cytokines; hypoxia; glycolysis; brain metabolism

向作者/读者索取更多资源

Malaria infection can cause cerebral symptoms without parasite invasion of brain tissue. We examined the relationships between brain biochemistry, bioenergetics, and gene expression in murine models of cerebral (Plasmodium berghei ANKA) and noncerebral (P. berghei K173) malaria using multinuclear NMR spectroscopy, neuropharmacological approaches, and real-time RT-PCR. In cerebral malaria caused by P. berghei ANKA infection, we found biochemical changes consistent with increased glutamatergic activity and decreased flux through the Krebs cycle, followed by increased production of the hypoxia markers lactate and alanine. This was accompanied by compromised brain bioenergetics. There were few significant changes in expression of mRNA for metabolic enzymes or transporters or in the rate of transport of glutamate or glucose. However, in keeping with a role for endogenous cytokines in malaria cerebral pathology, there was significant up-regulation of mRNAs for TNF-alpha, interferon-gamma, and lymphotoxin. These changes are consistent with a state of cytopathic hypoxia. By contrast, in P. berghei K173 infection the brain showed increased metabolic rate, with no deleterious effect on bioenergetics. This was accompanied by mild up-regulation of expression of metabolic enzymes. These changes are consistent with benign hypermetabolism whose cause remains a subject of speculation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据