4.5 Article

Intense narrow-bandwidth extreme ultraviolet laser system tunable up to 20 eV

期刊

REVIEW OF SCIENTIFIC INSTRUMENTS
卷 75, 期 3, 页码 613-622

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1646744

关键词

-

向作者/读者索取更多资源

Narrow-bandwidth, broadly tunable vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) radiation has been generated up to 20 eV by resonance-enhanced four-wave mixing in argon using the five two-photon resonances of argon between 105 000 and 109 000 cm(-1) corresponding to the optically accessible fine-structure components of the 3p(5)4p electron configuration. These two-photon resonances were reached by using the output of an F-2 excimer laser (157 nm) and the tripled output of a dye laser. The highest VUV/XUV intensities were obtained using the 3p(5)4p(')[1/2](0)<--3p(6)(S-1(0)) two-photon resonance at 108 722.62 cm(-1) in combination with the main excimer line. The conversion efficiency reaches an optimum for photon energies around 16 eV and slowly decreases when the photon energy rises to 20 eV. The use of the argon resonances also facilitates the generation of intense VUV laser radiation around 90 000 cm(-1), a region that is not easily accessible by four-wave mixing with the commonly used two-photon resonances of krypton (202.3 and 212.5 nm) and xenon (222.6 and 249.6 nm). The bandwidth of the VUV/XUV laser radiation was measured to be less than 0.2 cm(-1) over the entire range between 11 and 20 eV. The VUV/XUV laser system was used to measure the isotopic shift of the 2p(5)4s[3/2](1)<--2p(6)(S-1(0)) resonance in neon at 158 796 cm(-1), and fully rotationally resolved photoelectron spectra of C2H2 around 92 000 cm(-1) and CO2 between 140 000 and 146 000 cm(-1). Improved values of the first adiabatic ionization energy of C2H2 (91 953.5+/-0.5 cm(-1)) and CO2 (111 112.3+/-0.8 cm(-1)) were determined. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据