4.7 Article

Evolutionary plasticity of mono oxygenase-mediated resistance

期刊

PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY
卷 78, 期 3, 页码 171-178

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.pestbp.2004.01.002

关键词

cytochrome P450 monooxygenases; kdr; CYP6D1; evolution of resistance; house fly

向作者/读者索取更多资源

The cytochrome P450 monooxygenases are an important metabolic system involved in the detoxification of xenobiotics, and are thus one of the major mechanisms by which insects evolve insecticide resistance. However, comparatively little is known about the evolutionary constraints of this insecticide resistance mechanism. We investigated the genetic basis of resistance in a strain of house fly (NG98) from Georgia, USA that had evolved 3700-fold resistance to the pyrethroid insecticide permethrin, and compared this to other permethrin resistant strains of house flies from the US and Japan. Resistance in NG98 was due to kdr on autosome 3 and monooxygenase-mediated resistance on autosomes 1, 2, and 5. These results indicate that the genes which evolve to produce monooxygenase-mediated resistance to permethrin are different between different populations, and that the P450 monooxygenases have some degree of plasticity in response to selection. Monooxygenase-mediated resistance appears to evolve using different P450s, and possibly different regulatory signals controlling P450 expression, even in strains selected with the same insecticide. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据