4.7 Article

Theoretical and numerical results for spin coating of viscous liquids

期刊

PHYSICS OF FLUIDS
卷 16, 期 3, 页码 569-584

出版社

AIP Publishing
DOI: 10.1063/1.1637353

关键词

-

向作者/读者索取更多资源

A mathematical model is developed for fluid flow in the spin coating process. Spin coating employs centrifugal force to produce coatings of uniform thickness. The long-wave or lubrication approximation is used for the flow of thin liquid layers that are exposed to the air and lie on a spinning horizontal solid substrate. For low rotation rates, steady axisymmetric drop shapes can be found analytically. The stability of these drops is investigated, using an energy method, both with and without the long-wave approximation. For industrially relevant high-speed motions, we formulate and solve a theoretical and numerical model for the three-dimensional time-dependent motion of the deforming drop. We pay particular attention to the formation of fingers at the expanding front. The model includes viscous, capillary, gravitational, centrifugal, Coriolis, and finite-contact-angle effects. Both homogeneous and chemically heterogeneous substrates are considered. In agreement with published experiments, the model demonstrates that imperfect wetting behavior is the principal cause of fingering during spin coating. Features of the finger profiles are in close agreement with experimental observations. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据