4.6 Article

Influence of selected alloying elements on the stability of magnesium dihydride for hydrogen storage applications: A first-principles investigation

期刊

PHYSICAL REVIEW B
卷 69, 期 9, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.094205

关键词

-

向作者/读者索取更多资源

MgH2 is a promising compound for hydrogen storage. Its relatively high stability has been the main obstacle for practical applications. Here, first-principles calculations of MgH2 and MgH2-X (X=Al, Ti, Fe, Ni, Cu, or Nb) were carried out to investigate the influences of selected alloying elements on the stability of the magnesium hydride. The full-potential linearized augmented plane-wave method within the generalized gradient approximation was used in the present study. The influence of alloying elements on the stability of magnesium dihydride was investigated through calculations of the total energy of the considered systems. It was shown that the alloying elements considered here decrease the heat of formation of (Mg,X)H-2-i.e., destabilizing the hydride-with decreasing order of effect from Cu, Ni, Al, Nb, and Fe to Ti. The destabilization of the magnesium hydride by the alloying elements was due to a weakened bonding between magnesium and hydrogen atoms. Hence, the dehydrogenation properties of MgH2 are expected to be improved to a different extent by the addition of alloying elements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据