4.6 Article

Uptake and metabolism of (-)-epicatechin in endothelial cells

期刊

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS
卷 559, 期 -, 页码 17-23

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.abb.2014.03.014

关键词

(-)-Epicatechin; Uptake; Phase II metabolism; HUVEC; Endothelial cells; HepG2; Caco-2 monolayer

资金

  1. European Union FP7 [FP7-KBBE-2008-2B]

向作者/读者索取更多资源

Accumulating evidence suggest that diets rich in cocoa flavanols may have beneficial effects on cardiovascular health. The major cocoa flavanol monomer, (-)-epicatechin (EC), is readily absorbed and circulates primarily as glucuronidated, sulfated, and O-methylated metabolites in human plasma. However, cellular metabolism, for example in endothelial cells, is less well defined. In the present study we detail the uptake and cellular metabolism of EC and its major in vivo metabolites, (-)-epicatechin-3'-beta-D-glucuronide (E3G), (-)-epicatechin-3'-sulfate (E3S), 3'-O-methyl-(-)-epicatechin-5-sulfate (3ME5S), and 3'-O-methyl-(-)-epicatechin-7-sulfate (3ME7S) in human endothelial (HUVEC), liver (HepG2) and intestinal epithelial cells (Caco-2 monolayer). Our results indicate that EC associates with HUVECs, leading to its intracellular metabolism to 3ME7G and 3ME7S. In contrast, none of the metabolites were taken up by the cells. The metabolic rate and pattern of metabolism in HUVECs was similar to that observed in HepG2 cells, whilst in Caco-2 cells EC was metabolized to E3G, 3ME5G, 3ME7G, 4ME5G, 4ME7G and 3ME7S. Our data support the notion that endothelial cells may contribute significantly to EC metabolism. However, major human circulating metabolites are not accounted for in these model systems underscoring that caution should be taken when drawing conclusions on in vivo flavanol metabolism from in vitro experiments. (C) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据