4.6 Article

5-HT induces duodenal mucosal bicarbonate secretion via cAMP- and Ca2+-dependent signaling pathways and 5-HT4 receptors in mice

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00105.2003

关键词

serotonin; duodenal transport

资金

  1. NIDDK NIH HHS [DK-34491] Funding Source: Medline

向作者/读者索取更多资源

In previous studies, we have found that 5-hydroxytryptamine (5-HT) is a potent stimulant of duodenal mucosal bicarbonate secretion (DMBS) in mice. The aim of the present study was to determine the intracellular signaling pathways and 5-HT receptor subtypes involved in 5-HT-induced DMBS. Bicarbonate secretion by murine duodenal mucosa was examined in vitro in Ussing chambers. 5-HT receptor involvement in DMBS was inferred from pharmacological studies by using selective 5-HT receptor antagonists and agonists. The expression of 5-HT4 receptor mRNA in duodenal mucosa and epithelial cells was analyzed by RT-PCR. cAMP-dependent signaling pathway inhibitors MDL-12330A, Rp-cAMP, and H-89 and Ca2+-dependent signaling pathway inhibitors verapamil and W-13 markedly reduced 5-HT-stimulated duodenal bicarbonate secretion and short-circuit current (I-sc), whereas cGMP-dependent signaling pathway inhibitors NS-2028 and KT-5823 failed to alter these responses. Both SB-204070 and high-dose ICS-205930 (selective 5-HT4 receptor antagonists) markedly inhibited 5-HT-stimulated bicarbonate secretion and I-sc, whereas methiothepine (5-HT1 receptor antagonist), ketanserin (5-HT2 receptor antagonist), and a low concentration of ICS-205930 (5-HT3 receptor antagonist) had no effect. RS-67506 (partial 5-HT4 receptor agonist) concentration-dependently increased bicarbonate secretion and I-sc, whereas 5-carboxamidotryptamine (5-HT1 receptor agonist), alpha-methyl-5-HT (5-HT2 receptor agonist), and phenylbiguanide (5-HT3 receptor agonist) did not significantly increase bicarbonate secretion or I-sc. RT-PCR analysis confirmed the expression of 5-HT4 receptor mRNA in murine duodenal mucosa and epithelial cells. These results demonstrate that 5-HT regulates DMBS via both cAMP- and Ca2+-dependent signaling pathways and 5-HT4 receptors located in the duodenal mucosa and/or epithelial cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据