4.7 Article

Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death

期刊

DIABETES
卷 53, 期 3, 页码 726-734

出版社

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.53.3.726

关键词

-

资金

  1. NIDDK NIH HHS [5P60DK-20572] Funding Source: Medline
  2. NINDS NIH HHS [NS42056] Funding Source: Medline

向作者/读者索取更多资源

The central role of mitochondria in most pathways leading to programmed cell death (PCD) has focused our investigations into the mechanisms of glucose-induced neuronal degeneration. It has been postulated that hyperglycemic neuronal injury results from mitochondria membrane hyperpolarization and reactive oxygen species formation. The present study not only provides further evidence to support our model of glucose-induced PCD but also demonstrates a potent ability for uncoupling proteins (UCPs) to prevent this process. Dorsal root ganglion (DRG) neurons were screened for UCP expression by Western blotting and immunocytochemistry. The abilities of individual UCPs to prevent hyperglycemic PCD were assessed by adenovirus-mediated overexpression of UCP1 and UCP3. Interestingly, UCP3 is expressed not only in muscle, but also in DRG neurons under control conditions. UCP3 expression is rapidly downregulated by hyperglycemia in diabetic rats and by high glucose in cultured neurons. Overexpression of UCPs prevents glucose-induced transient mitochondrial membrane hyperpolarization, reactive oxygen species formation, and induction of PCD. The loss of UCP3 in DRG neurons may represent a significant contributing factor in glucose-induced injury. Furthermore, the ability to prevent UCP3 downregulation or to reproduce the uncoupling response in DRG neurons constitutes promising novel approaches to avert diabetic complications such as neuropathy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据