4.6 Article

The activity of an ancient atypical protein kinase is stimulated by ADP-ribose in vitro

期刊

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS
卷 511, 期 1-2, 页码 56-63

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.abb.2011.04.006

关键词

Archaea; Protein phosphorylation; Allosteric effector; Bud32/piD261 protein kinase; p53-related protein kinase

资金

  1. National Science Foundation [MCB-0315122]

向作者/读者索取更多资源

The piD261/Bud32 protein kinases are universal amongst the members of the Eucarya and Archaea. Despite the fact that phylogenetic analyses indicate that the piD261/Bud32 protein kinases descend directly from the primordial ancestor of the eukaryotic protein kinase superfamily, our knowledge of their physiological role is relatively fragmentary and largely limited to two eucaryal representatives: piD261/Bud32 from yeast and the p53-related protein kinase from humans. A deduced archaeal homolog, SsoPK5, is encoded by open reading frame sso0433 from the acidothermophile Sulfolobus solfataricus. Recombinantly-expressed SsoPK5 exhibited protein kinase activity, with a noticeable preference for phosphorylating proteins of acidic character and for Mn2+ as cofactor. The protein kinase also can phosphorylate itself on serine and threonine residues. The activity of rSsoPK5 was increased several-fold upon preincubation with either millimolar concentrations of 5'-AMP or submicromolar concentrations of ADP-ribose. Other mono- and di-nucleotides were ineffective. While activation was enhanced by the presence of ATP, no autophosphorylation of the protein kinase could be detected prior to addition of exogenous substrate proteins. We therefore suggest that ADP-ribose acts by evoking a conformational transition in the enzyme. Activation by ADP-ribose represents a potential regulatory link between chromatin remodeling and the activity of SsoPK5. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据