4.3 Article

NMDA receptors and voltage-dependent calcium channels mediate different aspects of acquisition and retention of a spatial memory task

期刊

NEUROBIOLOGY OF LEARNING AND MEMORY
卷 81, 期 2, 页码 105-114

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nlm.2003.10.003

关键词

LTP; long-term potentiation; nmdaLTP; vdccLTP; spatial memory; spatial learning

资金

  1. NIMH NIH HHS [MH57892] Funding Source: Medline

向作者/读者索取更多资源

Activity dependent calcium entry into neurons can initiate a form of synaptic plasticity called long-term potentiation (LTP). This phenomenon is considered by many to be one possible cellular mechanism underlying learning and memory. The calcium entry that induces this phenomenon can occur when N-methyl-D-aspartate receptors (NMDARs) and/or voltage-dependent calcium channels (VDCCs) are activated. While much is known about synaptic plasticity and the mechanisms that are triggered by activation of these two Ca2+ channels, it is unclear what roles they play in learning. To better understand the role activation of these channels may play in learning we systemically administered pharmacological antagonists to block NMDARs, VDCCs, or both during training trials and retention tests in a radial arm maze task. Wistar rats injected with the NMDAR antagonist MK-801 (0.1 mg/kg) were impaired in the acquisition of this task. In contrast, rats injected with verapamil (10 mg/kg), an antagonist to VDCCs, acquired the task at the same rate as control animals, but were impaired on a 10-day retention test. A group of animals injected with both antagonists were unable to learn the task. The results suggest that each of the calcium channels and the processes they trigger are involved in a different stage of memory formation or expression. (C) 2003 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据