4.6 Review

Conformational changes and catalysis by alcohol dehydrogenase

期刊

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS
卷 493, 期 1, 页码 3-12

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.abb.2009.07.001

关键词

Enzyme mechanism; Enzyme activation; Protein structure; Crystallography; Kinetic simulation; Proton relay; Zinc coordination

资金

  1. National Institutes of Health [GM078446]
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM078446] Funding Source: NIH RePORTER

向作者/读者索取更多资源

As shown by X-ray crystallography, horse liver alcohol dehydrogenase undergoes a global conformational change upon binding of NAD(+) or NADH, involving a rotation of the catalytic domain relative to the coenzyme binding domain and the closing Lip Of the active site to produce a catalytically efficient enzyme. The conformational change requires a complete coenzyme and is affected by various chemical or mutational Substitutions that can increase the catalytic turnover by altering the kinetics of the isomerization and rate of dissociation of coenzymes. The binding of NAD(+) is kinetically limited by a unimolecular isomerization (corresponding to the conformational change) that is controlled by deprotonation of the catalytic zinc-water to produce a negatively-charged zinc-hydroxide, which can attract the positively-charged nicotinamide ring. The deprotonation is facilitated by His-51 acting through a hydrogen-bonded network to relay the proton to solvent. Binding of NADH also involves a conformational change, but the rate is very fast. After the enzyme binds NAD(+) and closes up, the substrate displaces the hydroxide bound to the catalytic zinc; this exchange may involve a double displacement reaction where the carboxylate group of a glutamate residue first displaces the hydroxide (inverting the tetrahedral coordination of the zinc). and then the exogenous ligand displaces the glutamate. The resulting enzyme-NAD(+)-alcoholate complex is poised for hydrogen transfer, and small conformational fluctuations may bring the reactants together so that the hydride ion is transferred by quantum mechanical tunneling. In the process, the nicotinamide ring may become puckered, as seen in structures of complexes of the enzyme with NADH. The conformational changes of alcohol dehydrogenase demonstrate the importance of protein dynamics in catalysis. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据