4.6 Article

Modeling of carbon nanotube Schottky barrier modulation under oxidizing conditions

期刊

PHYSICAL REVIEW B
卷 69, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.125408

关键词

-

向作者/读者索取更多资源

A model is proposed for the previously reported lower Schottky barrier Phi(Bh) for hole transport in air than in vacuum at a junction between the metallic electrode and semiconducting carbon nanotube (CNT). We consider the electrostatics in a transition region between the electrode and CNT in the presence or absence of oxygen molecules (air or vacuum), where an appreciable potential drop occurs. The role of oxygen molecules is to increase this potential drop with a negative oxygen charge, leading to lower Phi(Bh) in air. The Schottky barrier modulation is large when a CNT depletion mode is involved, while the modulation is negligible when a CNT accumulation mode is involved. The mechanism prevails in both p- and n-CNT's, and the model consistently explains the key experimental findings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据