4.8 Article

PKC-α regulates cardiac contractility and propensity toward heart failure

期刊

NATURE MEDICINE
卷 10, 期 3, 页码 248-254

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nm1000

关键词

-

资金

  1. NHLBI NIH HHS [5T32 HL07382] Funding Source: Medline

向作者/读者索取更多资源

The protein kinase C (PKC) family of serine/threonine kinases functions downstream of nearly all membrane- associated signal transduction pathways. Here we identify PKC-alpha as a fundamental regulator of cardiac contractility and Ca2+ handling in myocytes. Hearts of Prkca-deficient mice are hypercontractile, whereas those of transgenic mice overexpressing Prkca are hypocontractile. Adenoviral gene transfer of dominant-negative or wild-type PKC-alpha into cardiac myocytes enhances or reduces contractility, respectively. Mechanistically, modulation of PKC-activity affects dephosphorylation of the sarcoplasmic reticulum Ca2+ ATPase-2 (SERCA-2) pump inhibitory protein phospholamban (PLB), and alters sarcoplasmic reticulum Ca2+ loading and the Ca2+ transient. PKC-directly phosphorylates protein phosphatase inhibitor-1 (I-1), altering the activity of protein phosphatase-1 (PP-1), which may account for the effects of PKC-alpha on PLB phosphorylation. Hypercontractility caused by Prkca deletion protects against heart failure induced by pressure overload, and against dilated cardiomyopathy induced by deleting the gene encoding muscle LIM protein (Csrp3). Deletion of Prkca also rescues cardiomyopathy associated with overexpression of PP-1. Thus, PKC-alpha functions as a nodal integrator of cardiac contractility by sensing intracellular Ca2+ and signal transduction events, which can profoundly affect propensity toward heart failure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据