4.7 Article

Interaction between large and small scales in the canopy sublayer

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 31, 期 5, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2003GL018611

关键词

-

向作者/读者索取更多资源

Two characteristics that distinguish canopy sublayer (CSL) turbulence from its atmospheric surface layer (ASL) counterpart are short-circuiting of the energy cascade and formation of Kelvin-Helmholtz (KH) vortices near the canopy top. These two phenomena lead to nonlinear and poorly understood interactions between small and large scale eddies within the CSL absent from classical ASL turbulence. Using velocity scaling arguments and nonlinear time series analysis, we explore the degree of interaction between large and small scales in a canopy composed of densely arrayed cylinders. We found that such interactions are dynamically divided into four regions depending on the distance from the wall, and posses various degrees of nonlinearity and interaction strengths. The broader impact to CSL Large Eddy Simulations (LES) and low-dimensional dynamical systems (LDDS) models of coherent eddies is briefly discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据