4.7 Article

Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2003JB002582

关键词

frictional strength; fault gouge; sheet silicates

向作者/读者索取更多资源

[1] We compare the frictional strengths of 17 sheet structure mineral powders, measured under dry and water-saturated conditions, to identify the factors that cause many of them to be relatively weak. The dry coefficient of friction m ranges upward from 0.2 for graphite, leveling off at 0.8 for margarite, clintonite, gibbsite, kaolinite, and lizardite. The values of mu (dry) correlate directly with calculated (001) interlayer bond strengths of the minerals. This correlation occurs because shear becomes localized along boundary and Riedel shears and the platy minerals in them rotate into alignment with the shear planes. For those gouges with mu (dry) < 0.8, shear occurs by breaking the interlayer bonds to form new cleavage surfaces. Where mu (dry) = 0.8, consistent with Byerlee's law, the interlayer bonds are sufficiently strong that other frictional processes dominate. The transition in dry friction mechanisms corresponds to calculated surface energies of 2 - 3 J/m(2). Adding water causes mu to decrease for every mineral tested except graphite. If the minerals are separated into groups with similar crystal structures, mu (wet) increases with increasing interlayer bond strength within each group. This relationship also holds for the swelling clay montmorillonite, whose water-saturated strength is consistent with the strengths of nonswelling clays of similar crystal structure. Water in the saturated gouges forms thin, structured films between the plate surfaces. The polar water molecules are bonded to the plate surfaces in proportion to the mineral's surface energy, and mu (wet) reflects the stresses required to shear through the water films.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据