4.8 Article

Differential protein synthesis and expression levels in normal and neoplastic human prostate cells and their regulation by type I and II interferons

期刊

ONCOGENE
卷 23, 期 9, 页码 1693-1703

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1207297

关键词

prostate cancer; interferon treatment; growth inhibitory effect of interferon

向作者/读者索取更多资源

Protein expression and de novo synthesis in normal and prostate cancer cell lines derived from the same patient were compared by proteomic analysis, and the effects of INFalpha and INFgamma ( INF = interferon) determined. The expressions of several INF-inducible proteins, including MxA, Nmi, PA28a and IFP53, were downregulated in the cancer cells. INFgamma induced a more than twofold increase or decrease in the synthesis rates of almost twice as many proteins in the cancer cell line. The positive regulator of INF-induced transcription ISGF3gamma was upregulated in the cancer cells and inversely regulated by INFalpha and INFgamma in the normal and cancer cells. Moreover, ISGF3gamma's induction by INFgamma in the cancer cells was more enhanced by simultaneous stimulation with EGF, than its induction in the normal cells. In all, 31 differentially regulated proteins were identified by mass spectrometry analysis, several of which are involved in chaperone-assisted protein folding in the endoplasmic reticulum ( ER) or in regulated protein degradation. Our results suggest that the exclusion of proteins by the ER quality control system, crosstalk between the EGF- and INF-induced signalling pathways and the regulation of INF-inducible genes are all altered in the prostate cancer cells. The combination of upregulated activity in the growth-promoting PI3K/Akt pathway, suppression of Nmi and overexpression of hnRNP-K and c-myc proteins may explain why the prostate cancer cells were found to be more resistant to the growth inhibitory effects of INFgamma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据