4.6 Article

Mechanism of oxygen sensing by the bacterial transcription factor fumarate-nitrate reduction (FNR)

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 10, 页码 9278-9286

出版社

ELSEVIER
DOI: 10.1074/jbc.M309878200

关键词

-

向作者/读者索取更多资源

The facultative anaerobe Escherichia coli adopts different metabolic modes in response to the availability of oxygen. The global transcriptional regulator FNR (fumarate-nitrate reduction) monitors the availability of oxygen in the environment. Binding as a homodimer to palindromic sequences of DNA, FNR carries a sensory domain, remote from the DNA binding helix-turn-helix motif, which responds to oxygen. The sensing mechanism involves the transformation of a [4Fe-4S](2+) cluster into a [2Fe-2S] form in vitro on reaction with oxygen. Evidence is presented to show that this process proceeds by at least two steps, the first, an oxidative one, being the formation, on reaction with O-2, of a [3Fe-4S](1+) cluster as an intermediate accompanied by the production of hydrogen peroxide. This is followed by a slower, non-redox, pseudo-first order step in which the [3Fe-4S](1+) form converts to a [2Fe-2S](2+) cluster. This must be accompanied by a substantial protein conformational change since the four cysteine ligands that bind the two forms of the FeS clusters have different spatial disposition. Hydrogen peroxide is also an oxidant of the [4Fe-4S](2+), causing a similar cluster transformation to a [2Fe-2S] form. Either the hydrogen peroxide formed on reaction with oxygen can be recycled by intracellular catalase or it can be used to oxidize further Fe-S clusters. In both cases, the efficacy of oxygen sensing by FNR will be increased.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据