4.3 Article

Nano-nutrition of chicken embryos. The effect of silver nanoparticles and ATP on expression of chosen genes involved in myogenesis

期刊

ARCHIVES OF ANIMAL NUTRITION
卷 67, 期 5, 页码 347-355

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/1745039X.2013.830520

关键词

ATP; broilers; muscles; embryos; gene expression; nanoparticles; silver

资金

  1. Danish Agency for Science Technology and Innovation [2106-08-0025]

向作者/读者索取更多资源

It has been suggested that the quantity and quality of nutrients stored in the egg might not be optimal for the fast rate of chicken embryo development in modern broilers, and embryos could be supplemented with nutrients by in ovo injection. Recent experiments showed that in ovo feeding reduces post-hatch mortality and skeletal disorders and increases muscle growth and breast meat yield. Adenosine triphosphate (ATP) is a ready for use energetic molecule, while nanoparticles of silver (Nano-Ag) may penetrate tissues as well as cells and localise inside cells. In this investigation, we hypothesised that silver nanoparticles could be used as a protective carrier for ATP as well as an active agent. ATP and/or an ATP complex with Nano-Ag would be delivered to the muscle cells as a gene expression regulator and promoter of growth and development of embryo breast muscle. A collection of 160 broiler eggs was randomly divided into a Control group without injection and injected groups with hydrocolloids of Nano-Ag, ATP or a complex of Nano-Ag and ATP (Nano-Ag/ATP). The embryos were evaluated on day 20 of incubation. The results indicate that the application of ATP to chicken embryos increases expression of fibroblast growth factor 2 (FGF2), vascular endothelial growth factor (VEGF) and Na+/K+ transporting ATPase (ATP1A1), which may indicate that an extra energy source can enhance molecular mechanisms of muscle cell proliferation. Nano-Ag also up-regulated expression of FGF2, VEGF, ATP1A1 and, also up-regulated expression of myogenic differentiation 1(MyoD1), affecting cell differentiation. The results indicate that ATP and Nano-Ag may accelerate growth and maturation of muscle cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据