4.7 Article

High cycle fatigue of a die cast AZ91E-T4 magnesium alloy

期刊

ACTA MATERIALIA
卷 52, 期 5, 页码 1327-1336

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2003.11.018

关键词

fatigue; magnesium; porosity; micromechanisms; crack propagation

向作者/读者索取更多资源

This study reveals the micro-mechanisms of fatigue crack nucleation and growth in a commercial high-pressure die cast automotive AZ91E-T4 Mg component. Mechanical fatigue tests were conducted under R = -1 conditions on specimens machined at different locations in the casting at total strain amplitudes ranging from 0.02% to 0.5%. Fracture surfaces of specimens that failed in the high cycle fatigue regime with lives spanning two orders of magnitude were examined using a scanning electron microscope. The difference in lives for the Mg specimens was primarily attributed to a drastic difference in nucleation site sizes, which ranged from several hundred put's to several mm's. A secondary effect may include the influence of average secondary dendrite arm spacing and average grain size. At low crack tip driving forces (K-max < 3.5 MPa rootm) intact particles and boundaries act as barriers to fatigue crack propagation, and consequently the cracks tended to avoid the interdendritic regions and progress through the cells, leaving a fine striated pattern in this single-phase region. At high driving forces (K-max > 3.5 MPa rootm) fractured particles and boundary decohesion created weak paths for fatigue crack propagation, and consequently the cracks followed the interdendritic regions, leaving serrated markings as the crack progressed through this heterogeneous region. The ramifications of the results on future modeling efforts are discussed in detail. (C) 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据