4.8 Article

Attractant binding alters arrangement of chemoreceptor dimers within its cluster at a cell pole

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0306660101

关键词

-

向作者/读者索取更多资源

Many sensory systems involve multiple steps of signal amplification to produce a significant response. One such mechanism may be the clustering of transmembrane receptors. In bacterial chemotaxis, where a stoichiometric His-Asp phosphorelay from the kinase CheA to the response regulator CheY plays a central role, the chemoreceptors (methyl-accepting chemotaxis proteins) cluster together with CheA and the adaptor CheW, at a pole of a rod-shaped cell. This clustering led to a proposal that signal amplification occurs through an interaction between chemoreceptor homodimers. Here, by using in vivo disulfide crosslinking assays, we examined an interdimer interaction of the aspartate chemoreceptor (Tar). Two cysteine residues were introduced into Tar: one at the subunit interface and the other at the external surface of the dimer. Crosslinked dimers and higher oligomers (especially a deduced hexamer) were detected and their abundance depended on CheA and CheW. The ligand aspartate significantly reduced the amounts of higher oligomers but did not affect the polar localization of Tar-GFP. Thus, the binding of aspartate alters the rate of collisions between Tar dimers in assembled signaling complexes, most likely due to a change in the relative positions or trajectories of the dimers. These collisions could occur within a trimer-of dimers predicted by crystallography, or between such trimers. These results are consistent with the proposal that the interaction of chemoreceptor dimers is involved in signal transduction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据