4.8 Article

Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts: A DFT study

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 126, 期 9, 页码 2956-2962

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja037741v

关键词

-

向作者/读者索取更多资源

Our density functional theory study of hydroperoxy (OOH) intermediates on various model titanosilicalite (TS-1) Ti centers explores how microstructural aspects of Ti sites effect propylene epoxidation reactivity and shows that Ti sites located adjacent to Si vacancies in the TS-1 lattice are more reactive than fully coordinated Ti sites, which we find do not react at all. We show that propylene epoxidation near a Si-vacancy occurs through a sequential pathway where H2O2 first forms a hydroperoxy intermediate Ti-OOH (15.4 kcal/mol activation energy) and then reacts with propylene by proximal oxygen abstraction (9.3 kcal/mol activation energy). The abstraction step is greatly facilitated through a simultaneous hydride transfer involving neighboring terminal silanol groups arising from the Si vacancy. The transition state for this step exhibits 6-fold oxygen coordination on Ti, and we conclude that the less constrained environment of Ti adjacent to a vacancy accounts for greater transition state stability by allowing relaxation to a more octahedral geometry. These results also show that the reactive hydroperoxy intermediates are generally characterized by smaller electron populations on the proximal oxygen atom compared to nonreactive intermediates and greater O-O polarization-providing a potential means of computationally screening novel titanosilicate structures for epoxidation reactivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据