4.7 Article

Force-free magnetosphere of an accretion disk-black hole system. I. Schwarzschild geometry

期刊

ASTROPHYSICAL JOURNAL
卷 603, 期 2, 页码 652-662

出版社

IOP PUBLISHING LTD
DOI: 10.1086/381543

关键词

accretion, accretion disks; black hole physics; galaxies : active; magnetic fields; MHD

向作者/读者索取更多资源

In this paper I study the magnetosphere of a black hole that is connected by the magnetic field to a thin conducting Keplerian disk. I consider the case of a Schwarzschild black hole only, leaving the more interesting but difficult case of a Kerr black hole to a future study. I assume that the magnetosphere is ideal, stationary, axisymmetric, and force-free. I pay special attention to the two singular surfaces present in the system, i.e., the event horizon and the inner light cylinder; I use the regularity condition at the light cylinder to determine the poloidal electric current as a function of poloidal magnetic flux. I numerically solve the Grad-Shafranov equation, which governs the structure of the magnetosphere, for two cases: the case of a nonrotating disk and the case of a Keplerian disk. I find that, in both cases, the poloidal flux function on the horizon matches a simple analytical expression corresponding to a radial magnetic field that is uniform on the horizon. Using this result, I express the poloidal current as an explicit function of the flux and find a perfect agreement between this analytical expression and my numerical results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据