4.7 Article

Experimental investigation of Rayleigh-Taylor mixing at small Atwood numbers

期刊

JOURNAL OF FLUID MECHANICS
卷 502, 期 -, 页码 233-271

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112003007419

关键词

-

向作者/读者索取更多资源

The self-similar evolution to turbulence of a multi-mode Rayleigh-Taylor mix at small density differences (A(t) similar to 7.5 x 10(-4)), is investigated through particle image velocimetry (PIV), and high-resolution thermocouple measurements. The density difference has been achieved through a temperature difference in the fluid. Cold fluid enters above the hot in a closed channel to form an unstable interface. This buoyancy-driven mixing experiment allows for long data collection times, short transients, and is statistically steady. First-, second-, and third-order statistics with spectra of velocity and temperature fields are presented. Analysis of the measurements has shed light on the structure of mixing as it develops to a self-similar regime in this flow. The onset of self-similarity is marked by the development of a self-preserving form of the temperature spectra, and the collapse of velocity profiles expressed in self-similar units. Vertical velocity fluctuations dominate horizontal velocity fluctuations in this experiment, with a ratio approaching 2:1 in the self-similar regime. This anisotropy extends to the Taylor microscales that undergo differential straining in the direction of gravity. Up to two decades of velocity spectra development, and four decades of temperature spectra, have been captured from the experiment. The velocity spectra consist of an inertial range comprised of anisotropic vertical and horizontal velocity fluctuations, and a more isotropic dissipative range. Buoyancy forcing occurs across the spectrum of velocity and temperature scales, but was not found to affect the structure of the spectra, resulting in a -5/3 slope, similar to other canonical turbulent flows. A scaling argument is presented to explain this observation. The net kinetic energy dissipation, as the flow evolves from an initial state to a final self-similar state was measured to be 49% of the accompanying loss in potential energy, and is in close agreement with values obtained from three-dimensional numerical simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据