4.7 Article

Electric field-controlled water permeation coupled to ion transport through a nanopore

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 120, 期 11, 页码 5001-5004

出版社

AIP Publishing
DOI: 10.1063/1.1665656

关键词

-

向作者/读者索取更多资源

We report molecular dynamics simulations of a generic hydrophobic nanopore connecting two reservoirs which are initially at different Na+ concentrations, as in a biological cell. The nanopore is impermeable to water under equilibrium conditions, but the strong electric field caused by the ionic concentration gradient drives water molecules in. The density and structure of water in the pore are highly field dependent. In a typical simulation run, we observe a succession of cation passages through the pore, characterized by approximately bulk mobility. These ion passages reduce the electric field, until the pore empties of water and closes to further ion transport, thus providing a possible mechanism for biological ion channel gating. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据