4.0 Article

Gene expression profiling in the midbrain of striatal 6-hydroxydopamine-injected mice

期刊

SYNAPSE
卷 51, 期 4, 页码 279-286

出版社

WILEY
DOI: 10.1002/syn.10307

关键词

ATAC-PCR; cyclin D1; gene expression profiling; 6-hydroxydopamine; Parkinson's disease

向作者/读者索取更多资源

In order to clarify mechanisms underlying dopaminergic neuronal death in Parkinson's disease (PD), a gene expression profiling study was performed in a rodent model of PD. In this model, mice are intrastriatally injected with 6-hydroxydopamine 14 (6-OHDA) and dopaminergic neurons in the substantia nigra (SN) gradually die by retrograde degeneration. The SN were removed 2 h, 24 h, or 14 days after 6-OHDA administration. Levels of mRNAs related to cell death or survival were quantified using adaptor-tagged competitive PCR (ATAC-PCR). The cyclin D1 gene showed an immediate increase in mRNA expression. After 24 h, when dopaminergic neurons were under intense degeneration, levels of caspase 8 mRNA and p53 apoptosis effecter related to pmp 22 (PERP) mRNA increased and, conversely, FAS mRNA decreased. After 14 days, when the degeneration was attenuated, levels of PERP mRNA and serum- and glucocorticoid-regulated kinase (SGK) mRNA still increased. SGK has a similarity to AKT, which is an important molecule involved in nerve growth factor signal transduction. AKT mRNA levels are low in dopaminergic neurons. These results suggest that an increase in cyclin D1 mRNA triggers dopaminergic neurons to enter an abnormal cell cycle, which leads to neuronal degeneration and cell death, possibly induced by PERP and caspase 8. In addition to cell death-related genes,. several survival-related genes are activated. SGK might function as a key enzyme for the survival of dopaminergic neurons. (C) 2003 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据