4.6 Article

Identification of nucleolin as an AU-rich element binding protein involved in bcl-2 mRNA stabilization

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 12, 页码 10855-10863

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M309111200

关键词

-

资金

  1. NCI NIH HHS [CA 87553] Funding Source: Medline

向作者/读者索取更多资源

bcl-2 mRNA contains an AU-rich element (ARE) that functions in regulating bcl-2 stability. Our earlier studies indicated that taxol- or okadaic acid-induced bcl-2 mRNA destabilization in HL-60 cells is associated with decreased binding of trans-acting factors to the ARE. To identify factors that play a role in the regulation of bcl-2 mRNA stability, bcl-2 ARE-binding proteins were purified from HL-60 cells. Three polypeptides of 100, 70, and 32 kDa were isolated from a bcl-2 ARE affinity matrix. Matrix-assisted laser desorption ionization mass spectroscopy analysis identified these proteins as full-length nucleolin and proteolytic fragments of nucleolin. RNA gel shifts assays indicated that recombinant nucleolin ( residues 284-707) binds specifically to bcl-2 ARE RNA. In addition, recombinant nucleolin decreases the rate of decay of mRNA in HL-60 cell extracts in an ARE-dependent manner. Taxol or okadaic acid treatment of HL-60 cells results in proteolysis of nucleolin in a similar time frame as drug-induced bcl-2 mRNA down-regulation. These findings suggest that nucleolin functions as a bcl-2-stabilizing factor and that taxol and okadaic acid treatment induces apoptosis in HL-60 cells through a process that involves down-regulation of nucleolin and destabilization of bcl-2 mRNA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据