4.6 Article

Situational repair of replication forks - Roles of RecG and RecA proteins

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 12, 页码 10973-10981

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M312184200

关键词

-

资金

  1. NIGMS NIH HHS [GM52725] Funding Source: Medline

向作者/读者索取更多资源

Replication forks often stall or collapse when they encounter a DNA lesion. Fork regression is part of several major paths to the repair of stalled forks, allowing nonmutagenic bypass of the lesion. We have shown previously that Escherichia coli RecA protein can promote extensive regression of a forked DNA substrate that mimics a possible structure of a replication fork stalled at a leading strand lesion. Using electron microscopy and gel electrophoresis, we demonstrate that another protein, E. coli RecG helicase, promotes extensive fork regression in the same system. The RecG-catalyzed fork regression is very efficient and faster than the RecA-promoted reaction (up to 240 bp s(-1)), despite very limited processivity of the RecG protein. The reaction is dependent upon ATP hydrolysis and is stimulated by single-stranded binding protein. The RecA- and RecG-promoted reactions are not synergistic. In fact, RecG functions poorly under the conditions optimal for the RecA reaction, and vice versa. When both RecA and RecG proteins are incubated with the DNA substrate, high RecG concentrations inhibit the RecA protein-promoted fork regression. The very different reaction profiles may reflect a situational application of these proteins to the rescue of stalled replication forks in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据