4.4 Article

Turbulent pipe flow of shear-thinning fluids

期刊

JOURNAL OF NON-NEWTONIAN FLUID MECHANICS
卷 118, 期 1, 页码 33-48

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jnnfm.2004.02.006

关键词

direct numerical simulation (DNS); non-Newtonian; pipe flow; turbulence; transition; shear-thinning; friction factor

向作者/读者索取更多资源

Direct numerical simulation of the weakly turbulent flow of non-Newtonian fluids is undertaken for two different generalised Newtonian rheology models using a spectral element-Fourier method. Results for a power law (shear-thinning) rheology agree well with experimentally determined logarithmic layer correlations and with other previously published experimental work. As the flow index becomes smaller for the same Reynolds number, the flow deviates further from the Newtonian profile and the results suggest that transition is delayed. Predicted friction factors fall above those in the literature, but below the Newtonian values when a comparison is undertaken on the basis of the Metzner-Reed Reynolds number. Results for a Herschel-Bulkley model (yield stress + shear-thinning) are compared to corresponding experimental measurements and are found to be in very good agreement. Use of direct numerical simulation shows great promise in understanding transition and turbulence in non-Newtonian fluids. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据