4.5 Article

Synthesis and X-ray crystal structures of organotri(2-furyl)phosphonium salts: effects of 2-furyl substituents at phosphorus on intramolecular nitrogen to phosphorus hypervalent coordinative interactions

期刊

INORGANICA CHIMICA ACTA
卷 357, 期 5, 页码 1558-1564

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.ica.2003.12.001

关键词

crystal structures; heteroaryl substituents; hypercoordination; hypervalency; P-31 NMR

向作者/读者索取更多资源

The synthesis of tri(2-fur)(8-quinolylmethyl)phosphonium bromide and 2-[2-tri(2-furyl)phosphoniophenyl]benzimidazole perchlorate is described, the latter involving a nickel(II)-catalysed displacement of bromine from 2-(2-bromophenyl)benzimidazole by tri(2-furyl)phosphine. X-ray structural Studies of the phosphoniobenzimidazole salt reveals the existence of a significant hypervalent coordinative interaction between heterocyclic nitrogen and the phosphonium centre, which also appears to be retained in solution, the P-31 NMR spectrum showing a significantly shielded phosphorus atom, delta(31)P = ca. -40 ppm in CDCl3. The structure of the phosphoniophenylbenzimidazole cation reveals major distortion of bond angles about phosphorus away from the idealised tetrahedral angles expected for a tetraarylphosphonium salt, in the range 102-116degrees. Three of the angles are reduced below the tetrahedral angle and three are increased, the structure about phosphorus approaching that of a trigonal bipyramid, in which the heterocyclic imino nitrogen forms part of a five-membered ring spanning apical-equatorial positions. The apical axis of the trigonal bipyramid is formed by this nitrogen atom and one of the 2-furyl groups, the apical axial bond angle (N2-P-Cl4) being an average of 178degrees. The remaining 2-furyl groups occupy equatorial positions, along with the phenyl ring. Significantly, the nitrogen-phosphorus distance is an average of 2.67 Angstrom (for two independent molecules in the unit cell), being the shortest observed in structures of this type, a consequence of the electron-withdrawing properties of the 2-furyl substituents at phosphorus. The structure also shows edge to face associations of 2-furyl substituents of one cation with the phenyl ring of the benzimidazole unit of another cation. The perchlorate anion is hydrogen-bonded to the nitrogen bearing the hydrogen atom in the benzimidazole ring system. In contrast, the N-P interaction in the quinolylmethylphosphonium salt is much less developed. with an N-P distance of 3.511 Angstrom, although there is considerable deformation of bond angles at phosphorus. The crystal structure is dominated by the existence of hydrogen-bonded interactions between the cation, anion and a molecule of water, and by face to face interactions between cations. Both salts undergo loss of a 2-furyl group on treatment with hydroxide ion. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据