4.7 Article

Hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria

期刊

CELL DEATH AND DIFFERENTIATION
卷 11, 期 4, 页码 390-402

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.cdd.4401369

关键词

apoptosis; Bax; CHOP; molecular chaperone; nitric oxide

向作者/读者索取更多资源

We reported that the endoplasmic reticulum ( ER) stress pathway involving CHOP, a member of the C/EBP transcription factor family, plays a key role in nitric oxide (NO)-mediated apoptosis of macrophages and pancreatic beta cells. We also showed that the cytosolic chaperone pair of hsp70 and dj1 (hsp40/hdj-1) or dj2 (HSDJ/hdj-2) prevents NO-mediated apoptosis upstream of cytochrome c release from mitochondria. To analyze roles of the chaperone pair in preventing apoptosis, RAW 264.7 macrophages stably expressing hsp70 and dj1 or dj2 were established. The chaperone pair prevented LPS/IFN-gamma-induced and NO-mediated apoptosis downstream of CHOP induction. hsp70 mutant protein lacking the ATPase domain or the C-terminal EEVD sequence were not effective in preventing CHOP-induced apoptosis. A mutant dj2 lacking the C-terminal prenylation CaaX motif, was also not effective. When wild-type RAW 264.7 cells were treated with LPS/IFN-gamma, NO-mediated apoptosis was induced, and proapoptotic Bcl-2 family protein Bax was translocated from cytosol to mitochondria. This translocation was prevented in cells stably expressing hsp70/dj2, and in CHOP knockout cells. Overexpression of CHOP in wild-type cells also induced translocation of Bax and this translocation was prevented in cells expressing hsp70/dj2. CHOP-induced apoptosis was prevented by Bax knock-down. Coimmunoprecipitation experiments showed that Bax interacts with both hsp70 and dj1/dj2. ATPase domain of hsp70 was necessary for the binding with Bax. These findings indicate that CHOP-induced apoptosis is mediated by translocation of Bax from the cytosol to the mitochondria, and hsp70/dj1 or dj2 chaperone pair prevents apoptosis by interacting with Bax and preventing translocation to the mitochondria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据