4.6 Article

Metal-insulator transition, giant negative magnetoresistance, and ferromagnetism in LaCo1-yNiyO3 -: art. no. 134407

期刊

PHYSICAL REVIEW B
卷 69, 期 13, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.134407

关键词

-

向作者/读者索取更多资源

We have investigated the transport and magnetic properties of the perovskite LaCo1-yNiyO3, an alloy of LaCoO3 (a semiconductor that exhibits spin-state transitions) and LaNiO3 (a paramagnetic metal). The metal-insulator transition (MIT) was found to occur at y=0.40. On the insulating side of the transition the conductivity obeys Mott variable range hopping with a characteristic temperature (T-0) that varies with y in a manner consistent with the predictions of the scaling theory of electron localization. On the metallic side the low temperature conductivity (down to 0.35 K) varies as T-1/2 due to the effects of electron-electron interaction in the presence of disorder. The composition dependence of the low-temperature conductivity in the critical region fits the scaling theory of electron localization with a conductivity critical exponent close to unity, consistent with the scaling of T-0 in the insulating phase. A large negative magnetoresistance is observed (up to 70% in 17 T) which increases monotonically with decreasing temperature and is smoothly decreased through the MIT. The magnetic properties show that doping LaCoO3 with Ni leads to a rapid destruction of the low spin-state for Co3+ ions, followed by the onset of distinct ferromagnetic interactions at higher Ni content. Similar to La1-xSrxCoO3, the system shows a smooth evolution from spin-glass to ferromagnetic ground states, which is interpreted in terms of the formation of ferromagnetic clusters. In contrast to La1-xSrxCoO3 further doping does not lead to a bulk ferromagnetlike state with a large T-C, despite the clear existence of ferromagnetic interactions. We suggest that this is due to a limitation of the strength of the ferromagnetic interactions, which could be related to the fact that Ni rich clusters are not thermodynamically stable. The ferromagnetic clusters in LaCo1-yNiyO3 do not percolate with increasing y explaining the lack of a high-T-C ferromagnetic state and the fact that the MIT is a simple Mott-Anderson transition rather than a percolation transition. Finally, in contrast to previous works (which focused on a single composition) we find no clear correlation between freezing temperature and the onset of magnetoresistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据