4.8 Article

Patterning enzymes inside microfluidic channels via photoattachment chemistry

期刊

ANALYTICAL CHEMISTRY
卷 76, 期 7, 页码 1838-1843

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac035234q

关键词

-

向作者/读者索取更多资源

We have developed a general method for photopatterning well-defined patches of enzymes inside a microfluidic device at any location. First, a passivating protein layer was adsorbed to the walls and floor of a poly(dimethylsiloxane)/glass microchannel. The channel was then filled with an aqueous biotin-linked dye solution. Using an Ar+/Kr+ laser, the fluorophore moieties were bleached to create highly reactive species. These activated molecules subsequently attached themselves to the adsorbed proteins on the microchannel walls and floor via a singlet oxygen-dependent mechanism. Enzymes linked to streptavidin or avidin could then be immobilized via (strept)avidin/biotin binding. Using this process, we were able to pattern multiple patches of streptavidin-linked alkaline phosphatdse inside a straight microfluidic channel without the use of valves under exclusively aqueous conditions. The density of alkaline phosphatase in the patches was calculated to be similar to5% of the maximum possible density by comparison with known standards. Turnover was observed via fluorogenic substrate conversion and fluorescence microscopy. A more complex two-step enzyme reaction was also designed. In this case, avidin-linked glucose oxidase and streptavidin-linked horseradish peroxidase were sequentially patterned in separate patches inside straight microfluidic channels. Product formed at the glucose oxidase patch became the substrate for horseradish peroxidase, patterned downstream, where fluorogenic substrate turnover was recorded.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据