4.7 Review

A proposed architecture for the neural representation of spatial context

期刊

NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS
卷 28, 期 2, 页码 201-218

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neubiorev.2003.12.002

关键词

context; learning and memory; spatial learning; configural learning; hippocampus; place cells

向作者/读者索取更多资源

The role of context in guiding animal behavior has attracted increasing attention in recent years, but little is known about what constitutes a context, nor how and where in the brain it is represented. Contextual stimuli can take many forms, but of particular importance are those that collectively define a particular place or situation. The representation of place has been linked to the hippocampus, because its principal neurons ('place cells') are spatially responsive; behavioral experiments also implicate this structure in the processing of contextual stimuli. Together, these findings suggest a hippocampal role in representing 'spatial context'. The present article outlines a proposed architecture for the encoding of spatial context in which spatial inputs to place cells are modulated (or 'gated') by non-spatial stimuli. We discuss recent experimental evidence that spatial context is population-coded, a property which could allow both discrimination between overlapping contexts and generalization across them, and thus provide a foundation for animals' capacity for flexible context-linked place learning. (C) 2003 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据