4.7 Article

Differential effects of interleukin-6 and-10 on skeletal muscle and liver insulin action in vivo

期刊

DIABETES
卷 53, 期 4, 页码 1060-1067

出版社

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.53.4.1060

关键词

-

向作者/读者索取更多资源

The circulating level of the inflammatory cytokine interleukin (IL)-6 is elevated in various insulin-resistant states including type 2 diabetes, obesity, cancer, and HIV-associated lipodystrophy. To determine the role of IL-6 in the development of insulin resistance, we examined the effects of IL-6 treatment on whole-body insulin action and glucose metabolism in vivo during hyperinsulinemic-euglycemic clamps in awake mice. Pretreatment of IL-6 blunted insulin's ability to suppress hepatic glucose production and insulin-stimulated insulin receptor substrate (IRS)-2-associated phosphatidylinositol (PI) 3-kinase activity in liver. Acute IL-6 treatment also reduced insulin-stimulated glucose uptake in skeletal muscle, and this was associated with defects in insulin-stimulated IRS-1-associated PI 3-kinase activity and increases in fatty acyl-CoA levels in skeletal muscle. In contrast, we found that co-treatment of IL-10, a predominantly anti-inflammatory cytokine, prevented IL-6-induced defects in hepatic insulin action and signaling activity. Additionally, IL-10 co-treatment protected skeletal muscle from IL-6 and lipid-induced defects in insulin action and signaling activity, and these effects were associated with decreases in intramuscular fatty acyl-CoA levels. This is the first study to demonstrate that inflammatory cytokines IL-6 and IL-10 alter hepatic and skeletal muscle insulin action in vivo, and the mechanism may involve cytokine-induced alteration in intracellular fat contents. These findings implicate an important role of inflammatory cytokines in the pathogenesis of insulin resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据