3.8 Article

Partitioning mycorrhizal influence on water relations of Phaseolus vulgaris into soil and plant components

出版社

NATL RESEARCH COUNCIL CANADA
DOI: 10.1139/B04-020

关键词

arbuscular mycorrhizal symbiosis; bean; drought; Gigaspora margarita; Glomus intraradices; stomatal conductance

向作者/读者索取更多资源

There is growing appreciation of arbuscular mycorrhizal effects on soil properties and their potential consequences on plant behavior. We examined the possibility that mycorrhizal soil may directly influence plant water relations. Using wild-type and noncolonizing bean mutants planted into soils previously produced using mycorrhizal or nonmycorrhizal sorghum plants, we partitioned mycorrhizal influence on stomatal conductance and drought resistance into soil and root components, testing whether effects of mycorrhizal fungi occurred mostly via mycorrhization of roots, mycorrhization of soil, or both. The mutation itself had no effect on any water relations parameter. Colonization by Gigaspora margarita Gerdemann & Trappe and Glomus intraradices Schenck & Smith had appreciable effects on leaf water potential at the lethal point and on osmotic adjustment, relative to nonmycorrhizal plants of comparable size. Mycorrhizal effects on drought resistance were attributable to an effect on the plant itself rather than to an effect of mycorrhizal soil. Mycorrhizal effects on stomatal conductance were attributable to mycorrhization of both roots and soil, as well as to mycorrhization of roots alone. Surprisingly, merely growing in a mycorrhizal soil resulted in promotion of stomatal conductance of nonmycorrhizal plants in both amply watered and droughted plants. Mycorrhizal effects on droughted plants did not appear to be related to altered soil water retention properties, as Gigaspora margarita and Glomus intraradices altered the soil's moisture characteristic curve only slightly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据