4.6 Article

Line formation in solar granulation - V. Missing UV-opacity and the photospheric Be abundance

期刊

ASTRONOMY & ASTROPHYSICS
卷 417, 期 2, 页码 769-774

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20034329

关键词

convection; line : formation; Sun : abundances; Sun : granulation; Sun : photosphere

向作者/读者索取更多资源

The possibility of unaccounted for opacity sources in the UV for late-type stars has often been invoked to explain discrepancies between predicted and observed flux distributions and spectral line strengths. Such missing UV-opacity could among other things have a significant impact on abundance determination for elements whose only relevant spectral features are accessible in this wavelength region, such as Be. Here, the study by Balachandran & Bell (1998) is re-visited in the light of a realistic 3D hydrodynamical solar model atmosphere and the recently significantly downward revised solar O abundance obtained with the same model atmosphere. The amount of missing UV-opacity, if any, is quantified by enforcing that the OH A-X electronic lines around 313 nm produce the same O abundance as the other available diagnostics: OH vibration-rotation and pure rotation lines in the IR, the forbidden [O I] 630.0 and 636.3 nm lines and high-excitation, permitted O I lines. This additional opacity is then applied for the synthesis of the Be II line at 313.0 nm to derive a solar photospheric Be abundance in excellent agreement with the meteoritic value, thus re-enforcing the conclusions of Balachandran & Bell. The about 50% extra opacity over accounted for opacity sources can be well explained by recent calculations by the Iron Project for photo-ionization of Fe I.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据