4.7 Article Proceedings Paper

Quo vadis elasticity imaging?

期刊

ULTRASONICS
卷 42, 期 1-9, 页码 331-336

出版社

ELSEVIER
DOI: 10.1016/j.ultras.2003.11.010

关键词

clinical; elasticity; imaging; modulus

向作者/读者索取更多资源

In the past decade, an important field that has emerged as complementary to ultrasonic imaging is that of elasticity imaging. The term encompasses a variety of techniques that can depict a mechanical response or property of tissues. In ultrasound, its premise is built on two important facts: (a) that significant differences between mechanical properties of several tissue components exist and (b) that the information contained in the coherent scattering, or speckle, is sufficient to depict these differences following an external or internal mechanical stimulus. Parameters, such as velocity of vibration, displacement, strain, strain rate, velocity of wave propagation and elastic modulus, have all been demonstrated feasible in their estimation and have resulted in the accurate depiction of stiffer tissue masses, such as tumors, high-intensity focused ultrasound (HIFU) lesions and atherosclerotic plaques. More recently, through the development of ultrafast algorithms tailored to suitable hardware as well as the familiarity of the physician with the sensitivity of the methods used, one elasticity imaging technique in particular, elastography, has been shown applicable in a typical clinical ultrasound setting. In other words, elastograms can currently be obtained at quasi real-time (approximately at a frame rate of 8 frames/s) and with the use of a hand-held transducer (as opposed to the previously used frame-suspended setup) during and simultaneously with an ultrasound exam of, e.g., the breast or the prostate. The higher frame rate available with certain clinical ultrasound scanners has also resulted in the successful application of elasticity imaging techniques on the myocardium and monitoring its deformation over several cardiac cycles for the detection of ischemic regions. As a result, elasticity imaging with its ever increasing number of applications and demonstrated applicability in a typical, clinical ultrasound setting promises to make an important contribution to the ultrasound practice as we know it. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据