4.3 Article

Sensor and actuator fault diagnosis of systems with discrete inputs and outputs

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSMCB.2003.820593

关键词

discrete-event systems; hybrid systems; modeling; process diagnosis; state observation

向作者/读者索取更多资源

The paper describes a method foe detecting and identifying faults that occur in the sensors or in the actuators of dynamical systems with discrete-valued inputs and outputs. The model used in the diagnosis is a stochastic automaton. The generalized observer scheme (GOS), which has been proposed for systems with continuous-variable inputs and outputs some years ago, are developed for discrete systems. This scheme solves the diagnostic problem as an observation problem, which is set no here for discrete-event systems. As the system under consideration is described by a stochastic automaton rather than a differential equation, the mathematical background and the diagnostic algorithms obtained are completely different from the well-known observers developed for continuous-variable systems. The GOS is extended here by a fault detection module to cope with plant faults that are different from actuator or sensor faults. The diagnostic algorithm consists of two steps, the first detecting the existence of a fault and the second isolating possible sensor or actuator faults or identifying plant faults. The results are applied to quantized systems whose discrete inputs and outputs result from a quantization of the continuous-variable input and output signals. Experimental results illustrate the proposed diagnostic method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据